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INFER FUNCTIONAL CORRECTION

https://imgur.com/KRJO4l0 https://www.youtube.com/watch?v=cK7g4xio0WU

Model equations

Model states Model inputs (Mesh, I.C., B.C.’s, Material properties etc.)



Background – Integrated Inference and Machine Learning

3 Holland et al. (AIAA Aviation, 2019), Sirignano et al. (JCP, 2020), Strofer and Xiao (arXiv, 2021)
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No explicit regularization used in this work

Model consistency



Where to augment?

⇒ What is the intended 
correction?

⇒ How will the 
augmentation affect 
cases where correction 
is not required?

⇒ Physics-based 
limiting or 
regularization possible?

How to design feature-space?

⇒ Improve generalizability
- Features chosen by a modeler
- Non-dimensionalized using
model quantities

⇒ Ensure predictive accuracy
- Enough features to roughly
ensure a one-to-one
features-to-augmentation map

⇒ Minimize extrapolation
- Bounded
- Parsimonious set of features

Which function class to use?

⇒ If available data populates the 
entire feature-space
- Neural Networks, Decision Trees
- Custom-built functions

⇒ Otherwise
- Localized learning

Learning and Inference assisted by Feature-space Engineering
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𝜂!

𝜂" Two different points in the physical
space (from the same case or
different cases) requiring different
augmentation values should not
share the same feature-space
location



Application: Bypass Transition
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Replaced 𝛾!"# with augmentation and removed 𝐹$ limiter



Feature to help determine transition onset
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Physics-informed 
choice of features

Physics-based non-
dimensionalization

Bounded features



Feature(s) to identify laminar/turbulent regions
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• Too many features over-specify physical conditions and reduce generalizability

• Too few features can result in lower predictive accuracy even for the training cases



Relative cost reduction w.r.t. inference iterations

Skin friction coefficient for T3A Skin friction coefficient for T3C1
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What happens when off-the-shelf NNs are used?



Limited data necessitates localized learning
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• C0-continuous

• Susceptible to curse of dimensionality
• Choice of grid resolution is crucial



A C0-continuous augmentation (Training)
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• Feature-space uniformly discretized into 45x15x15 cells

• Excellent solver convergence compared to a discontinuous functional form for the augmentation

• Cost function was the sum squared discrepancy in the 𝐶# profile
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How does the feature-space look?

𝜂! = 0.05

For all plots: X-axes: 𝜂" (0 to 1) Y-axes: 𝜂$ (0 to 1)

𝜂! = 0.15 𝜂! = 0.25 𝜂! = 0.35

𝜂! = 0.45 𝜂! = 0.55 𝜂! = 0.65 𝜂! = 0.75
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A C0-continuous augmentation (Testing – FPG)
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Good generalizability to zero and favorable pressure gradient cases



A C0-continuous augmentation (Testing – APG)
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Worse predictions for cases involving transition in adverse pressure gradient regions



Prediction on a compressor cascade (LES from RTRC)
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• Transition predicted near separation location

• Downstream discrepancy results from inadequacy in underlying turbulence model



Inferring a Hierarchical Augmentation
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• Feature space uniformly discretized into 30×10×10 cells for hierarchical augmentation

• Cost function was the sum squared discrepancy in the wall shear stress profile
• Using the hierarchical augmentation as is results in poor predictions on the flat plate cases



Designing a physics-informed blending function
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Predictions using the hierarchical augmentation

17

Motivation

Background

LIFE

Hierarchical 
Augmentation

Summary



Predictions using the blended hierarchical augmentation
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Blending function affects (and slightly improves) predictions for transition in APG regions



Summary
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• A C0-continuous augmentation function provides excellent solver convergence and added implicit regularization

• The LIFE framework was used to infer two augmentations:
• 𝛽! inferred from two flat plate cases

• Training cases involved transition of attached flows in zero/favorable pressure gradients
• Transition predictions generalize to unseen zero/favorable pressure gradient configurations well
• Transition is predicted significantly upstream in adverse pressure gradient regions

• 𝛽" subsequently inferred from one compressor cascade case
• Training case involves separation-induced transition
• Transition location predictions significantly improve across all test configurations
• Transition is predicted slightly upstream compared to what is observed from the LES data in some

instances

• An appropriate blending function (𝜎) was designed to shield attached flow regions from the effects of the
second (hierarchical) augmentation

• Future work will include exploring purely local feature candidates and the blending function in addition to
building a formal framework to optimize hyperparameters for localized learning
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